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We discuss a new mathematical approach of describing fractal lattices by means 
of transfer matrices of fractals (TMFs). These matrices have interesting 
mathematical properties. Possible physical applications of the TMFs are briefly 
indicated. 
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In this paper  we discuss a new method of  studying the geometry of  
complicated,  nonhomogeneous  fractals.  This method has been recently 
reported in some detail  ~1) and some possible physical  appl icat ions  have been 
indicated. It consists of  construct ing geometr ical  t ransfer  matr ices  (TMFs) ,  
which describe the i terative decora t ion  processes involved in generat ing 
fractal  lattices. Here we shall demonst ra te  this method by two simple 
examples.  We then mention briefly some of  the general  propert ies  of  TMFs ,  
and their physical  relevance. 

Let us consider  a Sierpinski  carpet  ~2'3) with a rescaling factor b = 5, 
where one (the central)  subsquare e l iminated at each iteration. The fractal  
dimensional i ty ,  D1, of  this lat t ice is 

D1 = log 24/ log 5 --- 1.975 (1) 

Now, in addi t ion to el iminating the central  square, we also el iminate its 
boundaries .  One such construct ion i terat ion is shown in Fig. 1. Start ing with 
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Fig. 1. One construction step with b = 5 and one eliminated subsquare. Details are given in 
the text. 

a "full square" (i.e., a square whose four sides have not been eliminated) we 
obtain 20 full subsquares and four semi-open subsquares (small squares that  
have only three sides each). At the next iteration we have both full squares 
and semi-open squares to start  with. In general, the result of  the (n + 1) 
decoration depends only on .the shapes '  statistics after the nth iteration, and 
not on previous decorat ion steps. Thus the equation describing the division 
of, say, a full square into smaller subsquares is the same on any length scale. 
Similarly, a semi-open square yields under a decoration iteration 15 full 
subsquares and nine semi-open subsquares. The linear process is described 
by a 2 • 2 T M F  of the form 

This T M F  operates on a vector at the nth  step, yielding a new vector 
describing a smaller (n + 1) scale. In this notat ion the vector (~) in the two- 
dimensional shape space describes a configuration consisting of two full 
squares and one semi-open square. The eigenvalues of  G~ are 21 = 24 and 
)1, 2 = 5. It turns out that  one can define a series of  fractal dimensionalities, 

D i ~ log 2i/log b, ~,i > 0 (3) 

D 1 is the primary fractal dimensionality (associated with the largest eigen- 
value) and its value, for the present example, coincides with the value 
calculated in Eq. (1). Besides D1, additional secondary fraetal dimen- 
sionalities are needed to describe the fractal. In the present example D 2 = 
log 5/log 5 = 1 represents a one-dimensional subset, bidden in our 
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construction. The (nonnormalized) right eigenvector associated with 21, ( 195 ), 
offers a straightforward geometric interpretation: the asymptotic ratio 
between full squares and semi-open squares is 15:4, since after many 
iterations this eigenvector dominates the decoration process. The fact that the 
second (right) eigenfector, ( ]1) ,  has a negative element means that the 
corresponding (one-dimensional) subset appears only in linear combinations 
with other sets. 

Our second example is again a Sierpinski carpet (b = 5) with nine 
subsquares (including their boundaries) eliminated at each step. The shape 
space is now three dimensional, including in addition to full and semi-open 
squares also doubly open squares. The TMF in this example is 

( 2o 1 Ge = 1 11 10 (4) 

3 6 

with eigenvalues 21 = 16, 2z = 5, 23 = 0. The fact that the TMF is now 
singular (~.3=0) is related to the fact that the lattice's order of 
ramification (2'3) is finite. 

These two examples illustrate few of the remarkable properties of 
TMFs. Quite generally the eigenvalues of these asymmetric nonnegative 
matrices are real, nonnegative integers. We now discuss some further general 
properties of TMFs: 

(a) Generalizability. The construction of TMFs is quite general. This 
method may be employed to study planar lattices as well as lalttices in 
higher Euclidean dimensionalities, shapes with general boundaries, both 
equilibrium and nonequilibrium structures, etc. Variants of this approach 
allow the distinction between shapes that are topological equal but differ, 
e.g., in their orientation in space. 

(b) Randomization. The process described above may be 
randomized. One distinguishes between weak randomization, when, e.g., at 
each iteration step exactly one subsquare is eliminated at random, and strong 
randomization when the number of eliminated subsquares may vary at each 
iteration, keeping only the average number fixed. 

When considering a random process, an average should be taken over a 
product (of a large number) of TMFs. Alternatively, one can study the 
average TMF. This latter type of averaging is relevant when different parts 
of a large lattice are iterated independently. 

(c) Fraetalfamilies. Two lattices belong to the same fractal family if 
their TMFs are constructed in the same shape space, and their 21 (or D1) are 
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identical. The eigenvalues and eigenvectors of TMFs that belong to the same 
fractal family satisfy nontrivial relations, discussed in Ref. 1. 

(d) Interpretation o f  the secondary fraetal dimensionalities. In 
various examples the secondary fractal dimensionalities have been associated 
(depending on the example) with pointlike, one-, or higher-dimensional 
subsets hidden in the fractal lattices, with various "cutting" curves, and with 
the fractal dimensionality of the backbone. 

(e) Mathematical formulation. Some of the remarkable mathematical 
properties of nonrandom TMFs have been proven rigorously in Ref. 1. Other 
properties, as well as the characterization of random TMFs, still remain as 
general (mathematically unproven) observations. 

It is quite tempting to apply this approach to various physical problems. 
Indeed, recently the TMF method was employed in a numerical study of 
percolation on a two-dimensional square lattice. The averaged TMF was 
constructed and analyzed, both when vacant squares were included in the 
statistics (the TMF was then a 6 • 6 matrix) or were thrown away. Some of 
the eigenvalues were associated with the Euclidean dimensionality of the 
lattice and its cutting curves, the fractal dimensionality of the infinite cluster 
(we obtained a value of ~-1.90), and its finite order of ramification (the latter 
corresponds to a zero eigenvalue). Geometrical understanding of the other 
eigenvalues is Still awaiting further theoretical progress as well as a better 
numerical evaluation of the TMF. 

A C K N O W L E D G M E N T S  

We acknowledge fruitful collaboration with J. Peyribse and Y. Meir in 
some of the results discussed here. Y.G. and A.K. are recipients of C. 
Weizmann postdoctoral fellowships. This research was partially supported 
by the U.S.-Israel Binational Science Foundation (BSF), Jerusalem, Israel, 
and by the National Science Foundation under Grant No. PHY77-27084, 
supplemented by funds from the National Aeronautics and Space 
Administration. 

REFERENCES 

1. B. B. Mandelbrot, Y. Gefen, A. Aharony, and J. Peyri6re, to be published: Y. Gefen, thesis, 
Tel-Aviv University, unpublished. 

2. B. B. Mandelbrot, The Fractal Nature of the Universe (Freeman, San Francisco, 1982). 
3. Y. Gefen, B. B. Mandelbrot, and A. Aharony, Phys. Rev. Lett. 45:855 (1980); Y. Gefen, 

A. Aharony, B. B. Mandelbrot, and Y. Meir, Phys. Rev. Lett. 50:145 (1983); Y. Gefen, A. 
Aharony, and B. B. Mandelbrot, J. Phys. A. 17:1277 (1984). 


